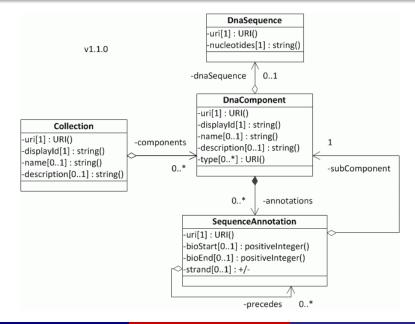
SBOL Stack: The One-stop-shop for Storing and Publishing SBOL Data

Curtis Madsen¹, Goksel Misirli¹, Matthew Pocock^{1,2}, Jennifer Hallinan¹, and Anil Wipat¹

¹School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

²Turing Ate My Hamster Ltd., Newcastle upon Tyne, UK

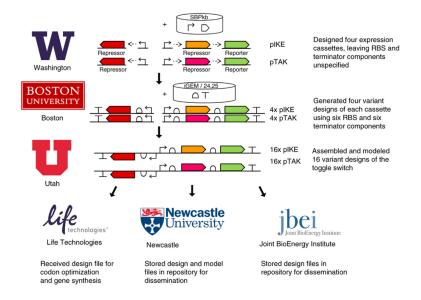


August 20, 2014 COMBINE Meeting

- Synthetic biology is a growing field that combines ideas from biology and engineering.
- The goal of synthetic biology is to design and build new useful biological systems.
- It is, however, often difficult to utilize the extensive amount of biological data for design in synthetic biology:
 - Efforts are usually individual and carried out by teams in different geographic locations.
 - The interests of researchers can vary greatly.
 - Typically, biological data relevant to the design of genetic circuits is not exchanged.

- To aid in the interpretation and exchange of biological information, standards are necessary.
- An emerging standard in synthetic biology is the *Synthetic Biology Open Language* (SBOL):
 - Designed to allow for the exchange of descriptions of genetic parts, devices, modules, and systems.
 - Facilitates storage of genetic designs in repositories.
 - Allows for designs of genetic parts and systems to be embedded in publications.

Synthetic Biology Open Language (SBOL)

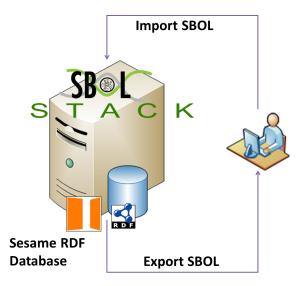


C. Madsen et al. (Newcastle University)

- SBOL can be used to create workflows between different tools and repositories from any number of organizations:
 - CAD tools such as iBioSim and TinkerCell.
 - Repositories such as JBEI-ICE and the Virtual Parts Repository.
 - Sequencing tools such as Vector NTI Express Designer.
- For instance, in a recent *Nature Biotechnology* paper¹, six independent groups collaborated on the design of a set of genetic toggle switches using several SBOL enabled tools.

¹Galdzicki *et al.*, "The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology," Nature Biotechnology, vol. 32, iss. 6, pp. 545-550, 2014.

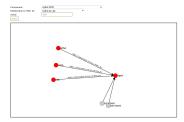
SBOL Workflows



- The SBOL language is based on RDF/XML and can be stored in triplestore repositories where it can be searched using SPARQL queries.
- Additionally, SBOL automatically integrates into Semantic Web technologies allowing for linking to other biological data not contained within SBOL.
- However, most existing repositories do not take advantage of this infrastructure and simply store individual SBOL files.

Newcastle SBOL Stack

- We have developed the SBOL Stack to allow researchers to better store, retrieve, exchange, and publish SBOL data.
- The SBOL Stack is a Sesame RDF database specifically designed for:
 - Publishing a library of synthetic parts and designs as a service.
 - Sharing SBOL with collaborators.
 - Storing designs of biological systems locally.
- Additionally, it includes a Web client that allows for uploading, downloading, and visualizing SBOL data using SPARQL queries.



- SBOL data described in XML can be uploaded to the SBOL Stack through the Web interface.
- Queries can be performed to retrieve and download the SBOL data using either the Web interface or the SPARQL endpoint.
- These queries allow users of the SBOL Stack to retrieve only desired parts of the SBOL data.

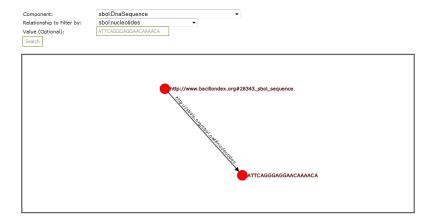
SPARQL Queries

- SPARQL queries can produce either tables or graphs.
- A table query results in a set of tuples (or variable bindings) and is commonly used to get specific values (URIs, blank nodes, literals) from the stored RDF data.
- A graph query, on the other hand, returns a graph of RDF triples in the form: Subject → Predicate → Object.

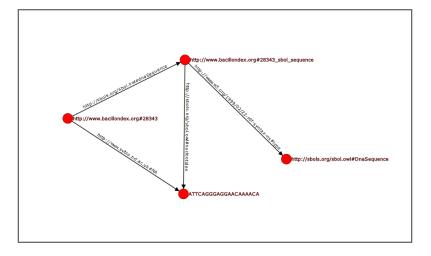
DnaComponent	label	subComponent	NA
http://www.bacillondex.org#28536	1d/A	http://www.bacillondex.org#3573	ATGCAGTCTCAAAAGC
http://www.bacillondex.org#28536	fedD	http://www.bacillondex.org#3573	ATOCASTCTCAAAAOO
http://www.baciliondex.org#28336	88028860	http://mm.baciliordex.org#3373	ATOCASTCTCAMAAOO
http://www.bacillondex.org#28624	ecoA	http://www.bacillondex.org#3549	ATGAAATTOTTAAAACO
http://www.baciliondex.org#28624	88U08060	http://www.baciliondex.org#3349	ATGAAATTOTTAAAACG
http://www.bacillondax.org#28624	TPP-dependent alpha subunit	http://www.bacilondex.org#3549	АТБАААТТОТТАХААСС
http://www.bacillondex.org#28624	YOK	http://www.bacillondex.org#3549	ATGAAATTOTTAAAACO
http://www.bacillondex.org#32611	85U12300	http://www.bacillondex.org#3387	ATOSAACCCTTCATOS
http://www.bacillondex.org#32611	uxeC	http://www.bacillondex.org#3567	ATOGAACCCTTCATOO
http://www.bacillondex.org#32611	vjenā.	http://www.bacillondex.org#3387	ATOSAACCCTTCATOS
http://www.bacillondex.org#32669	kdgA	http://www.bacillordex.org#3572	ATBGAGTCCAAAGTCG
http://www.bacillondex.org#22669	85U22100	http://www.baciliondex.org#2572	ATGGAGTCCAAAGTCG
http://www.bacillondex.org#28932	85038770	http://www.bacillondex.org#3593	ATESGAGASCITCAAA
http://www.bacillondex.org#28922	cimit	http://www.bacillondex.org#2592	ATOSGAGASCTTCAAA
http://www.bacillondex.org#28932	yxek2	http://www.bacillondex.org#3593	ATOOGAGADCTTCAAA
1444 // and bearfloaders an #31288	00134340	have from beerloods, an #3557	ATGALANA STRATCH

SPARQL Query:

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-svntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX sbol: <http://sbols.org/sbol.owl#>
PREFIX so: <http://purl.org/obo/owl/SO#>
PREFIX sybio: <http://www.sybio.ncl.ac.uk#>
SELECT ?DnaComponent ?label ?subComponent ?NA
WHERE
?DnaComponent rdf:type sbol:DnaComponent ;
             rdf:type so:SO 0000316 ;
             rdfs:label ?label :
             sbol:dnaSeguence ?dnaSeguence ;
             sbol:annotation ?SequenceAnnotation.
?dnaSeguence sbol:nucleotides ?NA ;
            a sbol:DnaSequence.
?SequenceAnnotation sbol; subComponent ?subComponent.
```

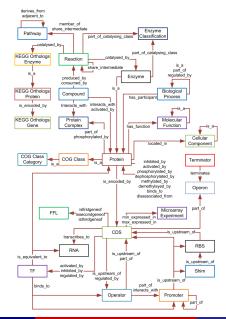

SPARQL Query

Example Table Query


DnaComponent	label	subComponent	NA
http://www.bacillondex.org#28536	lcfA	http://www.bacillondex.org#3573	ATGCAGTCTCAAAAGCC
http://www.bacillondex.org#28536	fadD	http://www.bacillondex.org#3573	ATGCAGTCTCAAAAGCC
http://www.bacillondex.org#28536	BSU28560	http://www.bacillondex.org#3573	ATGCAGTCTCAAAAGCC
http://www.bacillondex.org#28624	acoA	http://www.bacillondex.org#3549	ATGAAATTGTTAAAACG.
http://www.bacillondex.org#28624	BSU08060	http://www.bacillondex.org#3549	ATGAAATTGTTAAAACG.
http://www.bacillondex.org#28624	TPP-dependent alpha subunit	http://www.bacillondex.org#3549	ATGAAATTGTTAAAACG.
http://www.bacillondex.org#28624	yfjK	http://www.bacillondex.org#3549	ATGAAATTGTTAAAACG.
http://www.bacillondex.org#32611	BSU12300	http://www.bacillondex.org#3587	ATGGAACCCTTCATGG
http://www.bacillondex.org#32611	uxaC	http://www.bacillondex.org#3587	ATGGAACCCTTCATGG
http://www.bacillondex.org#32611	yjmA	http://www.bacillondex.org#3587	ATGGAACCCTTCATGG
http://www.bacillondex.org#32669	kdgA	http://www.bacillondex.org#3572	ATGGAGTCCAAAGTCG1
http://www.bacillondex.org#32669	BSU22100	http://www.bacillondex.org#3572	ATGGAGTCCAAAGTCG1
http://www.bacillondex.org#28932	BSU38770	http://www.bacillondex.org#3593	ATGGGAGAGCTTCAAAC
http://www.bacillondex.org#28932	cimH	http://www.bacillondex.org#3593	ATGGGAGAGCTTCAAAC
http://www.bacillondex.org#28932	yxkJ	http://www.bacillondex.org#3593	ATGGGAGAGCTTCAAAC
http://www.bacillandov.ora#22655	001125740	http://www.bocillondov.org#2027	ATGAAAAAAGTTATCAC

- Since graph queries return well formed RDF, the graph can be downloaded and used in another tool that supports RDF data.
- As the SBOL language is RDF, these types of queries can return SBOL data.
- The SBOL Stack has been optimized for these types of queries and contains a search option that automatically performs graph queries without the need to write SPARQL directly.
- All a user needs to specify is a type of Subject, a type of Predicate, and an optional Object.

Example Graph Query


- The SBOL Stack contains the option to further search selected nodes in the results of a graph query.
- This option is very useful for someone who is interested in searching for more data about a particular element.
- For example, a user may be interested in:
 - Interactions with other elements;
 - The DNA sequence on the element; or
 - Components the element is contained within among others.

- It can be difficult to identify the mapping between a nucleotide sequence and information such as biological function.
- Information about genetic features and their biological constraints is usually spread amongst many databases.
- Since SBOL is based on RDF, it is ideal for data integration and can easily be linked to other RDF data.
 - Some examples include integrating with ontologies such as the Sequence Ontology and the Gene Ontology.

- In addition to SBOL, the SBOL Stack includes an ontology about genetic features, gene products and their annotations, gene regulatory networks, metabolic pathways, and so on.
 - It is possible to include other custom ontologies in the SBOL Stack such as BioPAX.
- Biological entities can be mapped to SBOL objects using the ontology to enrich the data.
- The data model from the ontology can be used to automate the identification of biological parts via SPARQL queries.

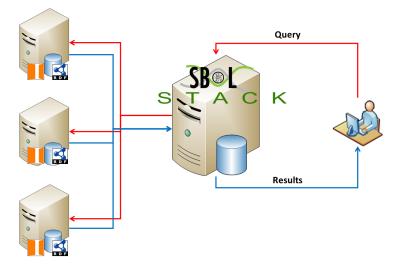
SynBiOnt



C. Madsen et al. (Newcastle University)

SBOL Stack

COMBINE / August 20, 2014 20 / 28


Example SynBiOnt Query

- One of the strengths of the SBOL Stack is its ability to register many Sesame RDF databases and perform federated queries for data integration.
- These queries allow for the retrieval and compilation of more complete data from multiple databases without the need to manually query each individual repository.
- Repositories that contain any RDF information about biological parts can be included in the federated queries.
- The SBOL Stack is compliant with and integrates seamlessly with Web2.0 resources.

Federated Querying

Sesame RDF Databases

SBOL Stack

Automatic Updated Data Integration

- The SBOL Stack automatically retrieves the most up-to-date data each time a query is made.
- The SBOL Stack can also take advantage of the cloud-based messaging system, POLEN (PrOtocol for Linking External Nodes) developed for the Flowers Consortium¹, to receive a notification when data are updated.

SBOL Stack Webpage

- As more biological data are generated, it will become essential to adopt standards and repositories so computer applications can communicate and exchange data efficiently and in an automated manner.
- Tools and repositories that support standards like SBOL will be required to create workflows for design in synthetic biology.
- The automatic retrieval and integration of SBOL data provided by the SBOL Stack makes it a must-have tool for synthetic biology workflows.

- We have begun adding SBOL 2.0 triples to the SBOL Stack.
 - We plan to fully upgrade the SBOL Stack to store SBOL 2.0 data once the specification has been finalized.
- The SBOL Stack can be accessed computationally as a SPARQL endpoint.
 - However, we are extending the API to allow for computational tools to access the SBOL Stack using the direct search interface that is utilized by the Web client.
 - This API will eliminate the need to write raw SPARQL queries.

Acknowledgements

Goksel Misirli

Jennifer Hallinan

Matthew Pocock

Anil Wipat

SBOL Stack